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Abstract. By using the Maxwell equations in a Schrödinger-like form, the geometric phase in photon
systems is calculated. This approach provides a unified way to discuss geometric phases in both photon
(massless) and other massive particle systems. The concept of parameter space is not introduced in our
discussion. So all complications caused by it can be avoided. In principle, this approach can used to calculate
the geometric phase in any cyclic evolution of photon systems.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 41.20.Bt Maxwell equations, time-varying fields, conservation
laws – 42.90.+m Other topics in optics

1 Introduction

Berry pointed out [1] that a nondegenerate quantum state
|ψ(t)〉 of a Hamiltonian H(t) which varies adiabatically
through a circuit C in parameter space acquires an addi-
tional phase γ(C) which is only relative to the geometry
of the parameter space, besides the “normal” dynamical
phase

φd = −
1

~

∫
〈ψ(t)|H(t)|ψ(t)〉dt. (1)

γ(C) is called the geometric phase, topological phase or
Berry’s phase. Immediately, Simon [2] gave a mathemati-
cal interpretation to the geometric phase as a U(1) holon-
omy on a complex Hilbert line bundle. Since then the geo-
metric phase (or Berry’s phase) has been widely discussed
and observed in various fields.

In Berry’s original discussion, there were three con-
straints on the quantum system: (i) nondegenerate state;
(ii) adiabatic and (iii) cyclic evolution. All the three con-
straints were removed later. The first one was removed
by Wilczek and Zee [3]. They related the evolution and
phases of a degenerate manifold to a non-Abelian Gauge,
i.e., γ(C) is a U(N) holonomy for an N -fold degenerate
level.

The substantial generalization was developed by
Aharonov and Anandan [4]. They argued what should be
dealt with more fundamentally are circuits of the quan-
tum system itself, rather than circuits of the Hamiltonian
in a parameter space. This means that the concept of the
parameter space is no longer necessary. In their formu-
lation, a geometric phase factor β is introduced for any
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cyclic evolution of a quantum system as follows:

β =

∫ τ

0

〈ψ̃|i(d|ψ̃〉/dt)dt, (2)

where |ψ̃(t)〉 = e−if(t)|ψ(t)〉, f(τ)− f(0) = φ and |ψ(t)〉 =
eiφ|ψ(0)〉. β is so-called the Aharonov-Anandan phase and
the Berry’s phase γ(C) can be considered as its adiabatic
limit.

The last one was removed by Samuel and Bhandari [5].
They pointed out that one can close a non-cyclic evolution
with a geodesic and obtain the corresponding geometric
phase.

On the experimental side, a series of striking experi-
ments have also been carried out and their results provide
direct or indirect evidences for the existence of geomet-
ric phases [6]. Among them the most remarkable one is
to observe the angle of rotation of linearly polarized light
propagating down a helically wound, single-mode optical
fiber. This was suggested by Chiao and Wu [7] first and
was carried through by Tomita and Chiao [8] immediately.

Photons are neutral, massless relativistic particles.
They are quite different from other charged, massive
ones. Photons cannot be described by the non-relativistic
Schrödinger equation. It is well-known, the role of the
Schrödinger equation in the calculation of the geomet-
ric phase is to provide a connection. So how do we cal-
culate the geometric phase in photon systems without a
connection? In order to solve this problem, one usually
adopts two methods. One is to use so-called Pancharat-
nam’s connection [9]. The other is to do so by analogy
between the helicity and the spin magnetic moment [7].
In both cases, however, the calculation is not started from
the Schrödinger equation. This means there is no unified
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way to discuss geometric phases in both systems of pho-
tons (or, more general, massless particles) and other mas-
sive ones.

In this paper, in terms of the Maxwell equations
in a Schrödinger-like form [10], the geometric phase (in
Aharonov-Anandan formulation) in photon systems is cal-
culated. This approach provides a unified way to deal with
both massless and massive particle systems. The concept
of parameter space is not introduced in our discussion, so
all complications and ambiguits caused by it, for example
birefringence, elastooptical effects caused by the optical
fibre, can be avoided.

2 The Maxwell equations in Schrödinger form

The spin 1, massless photon is described by the Maxwell
equations. In order to discuss the geometric phase of the
photon, we need to rewrite the Maxwell equations in a
form similar to the Schrödinger equation. This can be re-
alized by combining the electric field E and the magnetic
field B into a complex column vector Ψ :

Ψ =

ψ1

ψ2

ψ3

 , (3)

where ψi ≡ Ei + iBi, (i = 1, 2, 3) and Ei and Bi are the
components of E and B respectively.

The Maxwell equations in vacuum (without exterior
source) are

∇×E +
∂B

∂t
= 0, (4.1)

∇×B−
∂E

∂t
= 0, (4.2)

∇ ·E = 0, (4.3)

∇ ·B = 0. (4.4)

Where we have set c = 1. Use equation (3), then equa-
tions (4.1, 4.2) can be combined to write as

εijk
∂ψk

∂xj
− i

∂ψi

∂t
= 0, (5)

and equation (4.3, 4.4) as

∂ψi

∂xi
= 0, (6)

where εijk is the totally antisymmetric tensor in three
dimensions.

Equation (6) can be considered as the initial condi-
tion of equation (5). This can be shown as below. Partial
differentiating both side of equation (5) with xi, we have

εijk
∂2ψk

∂xi∂xj
− i

∂

∂xi

(
∂ψi

∂t

)
= 0.

Due to the antisymmetry of εijk and the symmetry of
∂2/∂xi∂xj , the first term vanishes, i.e.

∂

∂xi

∂ψi

∂t
= 0

or

∂ψi

∂xi
= const.

Letting ∂ψi/∂xi = 0 at t = 0, then equation (6) is just
the initial condition of equation (5). This means that we
need only to consider equation (5).

If set

(Si)jk ≡ −iεijk; pi ≡ −i
∂

∂xi
, (7)

then equation (5) becomes

i
∂ψ

∂t
= (Sj)ikpjψk. (8)

It is easy to show

[Si, Sj ] = iεijkS
k.

So

S = S1e1 + S2e2 + S3e3

can be viewed as a spin operator. On the other hand,

p = p1e1 + p2e2 + p3e3

looks like a momentum operator. So

Hik ≡ (Sj)ikpj = −εijk∂j (9)

can be viewed as matrix elements of the Hamiltonian. Us-
ing equations (3, 9), equation (8) becomes

i
∂ψk

∂t
= Hikψk (10)

or

i
∂Ψ

∂t
= HΨ, (11)

where

H =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 . (12)

Equation (11) looks like a Schrödinger equation in the
natural unit system (c = ~ = 1), however, it is still the
classical Maxwell equations (in complex form). H is not
a true Hamiltonian either, but an operator defined by
equations (7, 9). We should note that the “Hamiltonian”
H, (Eq. (12)), does not possess the usual form of Hamil-
tonian: H = p2/2m+V . This fact indicates that photons
are relativistic particles.
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3 The calculation of the AA phase

The photon’s AA phase β can be calculated in a straight
forward way from equations (2, 11).

Photons are massless spin-1 particles, so their helic-
ity only possesses two directions: parallel or anti-parallel
to their momentum direction. From equation (9), H can
be viewed as a helicity operator (i.e. S,P are viewed as
a spin and momentum operator respectively). The eigen-
value equation of H is

H|Φλ〉 = λ|Φλ〉, (13)

where λ = ±1 are the photon helicity eigenvalues and |Φλ〉
are two eigenvectors which span a Hilbert space H.

An (n+ 1)-dimensional Hilbert space H is isomorphic
to an (n + 1)-dimensional complex space Cn+1. The so-
called projective Hilbert space P is consisted by rays in
H. A ray is an equivalent class of states up to overall
normalization and phase, so if |Φ〉 = c|Φ′〉 (where c is an
arbitrary non-zero complex number), then |Φ〉 = |Φ′〉. P
is isomorphic to n-dimensional complex projective space
CPn [13]. In our case, n = 2, so H is C2 and its projective
space P is CP 1. CP 1 = S2 is just a sphere (Poincaré
sphere [9]).

Solving equation (13), we have

|Ψ±〉 = e∓i|λ|t|Φ±〉

=
1
√

2

±i−1
0

 exp±ik(±x3 − t), (14)

where signs ± stand for two circular polarized states of
the photon with helicity ±1 and k = |λ| = 1.

Any polarized states of a photon can be expressed as
a superposition of two circular polarized states:

|Ψ〉 = a+|Ψ+〉+ a−|Ψ−〉. (15)

In the helicity representation, the expression of a state
vector at t = 0 is

|Ψ(0)〉 =

(
a+

a−

)
=

(
cos(θ/2)
sin(θ/2)

)
, (16)

where θ is the angle between the directions of |Ψ〉 and
|Ψ+〉. Its evolution in time t is

|Ψ(t)〉 = ei(εijk∂j)t
(

cos(θ/2)
sin(θ/2)

)
=

(
eikt cos (θ/2)
e−ikt sin (θ/2)

)
.

(17)

Equation (17) describes the evolution of photon systems
in the projective space P , i.e., on the Poincaré sphere
S2. Thus, using the similar discussion of the first example
in [4], we have

β =

∫ τ

0

(e−ikt cos (θ/2), eikt sin (θ/2))

× i

(
ikeikt cos (θ/2)
−ike−ikt sin (θ/2)

)
dt

= −

∫ τ

0

(cos2 (θ/2)− sin2 (θ/2))kdt. (18)

Integrating equation (18) in a period τ = 2π/k and up to
the ambiguity of adding 2πn, we obtain

β = 2π(1− cos θ). (19)

Equation (19) is just the AA phase of photon systems. It,
indeed, is the solid angle subtended by a curve traced on
the Poincaré sphere S2.

4 The geometric phase along a spatial helix

We can even calculate geometric phases of photon systems
more intuitively in ordinary geometry contexts. Image a
beam of polarized light propagating along a spatial helix.
For convenience, let us set two coordinates: rest one O
and local one O′. O′ moves together with the photon.

In O the basis vectors, position vectors and partial
differential operators are denoted as

ei (i = 1, 2, 3);

x = xiei;

∂ = ∂i ei (∂i ≡ ∂/∂xi) (20)

respectively. We have adopted the summation convention
here.

In O′, these are

e′i (i = 1, 2, 3);

x′ = xiei;

∂′ = ∂′i e
′
i (∂′i ≡ ∂/∂x

′
i). (21)

The transformation rules between O and O′ are

xi = vijx
′
j ; ∂i = vji∂

′
j ; ψi = vjiψ

′
i, (22)

where vij are the transformation matrix elements:

vij = e′i · ej. (23)

Equation (5) is the Maxwell equations in O. Using equa-
tion (22), we have

ε′lmn∂
′
mψ
′
n = i∂′tψ

′
l, (24)

where ε′lmn = εijkvlivmjvnk. This can be viewed as the
Maxwell equations in O′.

Now equation (14) in O′ should be denoted as

Ψ ′± =
1
√

2

±i−1
0

 exp±ik(±x′3 − t). (25)

Equation (24) has an exactly same form of Schrödinger
equation, so we can expect that an additional geometric
phase will appear when a photon propagates along a space
curve. (For simplicity, we only take the circular polarized
state with helicity +1 and ignore its subscript “+” in our
calculation below. There is, certainly, no difference if we
take the one with −1.) That is

ψk = e−iγ(t)vnkψ
′
n. (26)
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Substituting equation (26) into equation (5) and using
equation (24), we have

γ̇(t)vmiψ
′
m = iv̇niψ

′
n. (27)

Using the orthogonality relations of vij and orthogonal-
ity and normalization relations between ψ′† and ψ′, equa-
tion (27) becomes

γ̇(t) = ivmiv̇niψ
′†
miψ

′
ni. (28)

This is an evolution equation of geometric phase γ(t). In-
tegrating it, we have

γc = i

∫ T

0

dt vmiv̇niψ
′†
mψ
′
n. (29)

Using equations (22, 24), equation (29) is simplified as

γc =
1

2

∮
e′2 · de

′
1 −

1

2

∮
e′1 · de

′
2. (30)

In the case of a photon propagates along a helix whose
axis is along e3, there exist following relations between
basis vectors of O and O′:

e′1 = − cosφ e1 − sinφ e2,

e′2 = cos θ sinφ e1 − cos θ cosφ e2 + sin θ e3 (31)

where θ and φ are polar angles: θ is the angle between
the helicity direction e′3 and the axis of the helix e3, i.e.,
the so-called pitch angle of the helix; φ is the orientation
angle. Substituting equation (31) into equation (30) and
adding 2πn, we obtain the geometric phase

γc = 2π(1− cos θ). (32)

Equation (32) is the geometric phase acquired by a photon
when it evolves around a helix by one cycle. If a photon
evolves along the curve n times, the geometric phase be-
comes

γ(+)
c = 2πn(1− cos θ), (33)

where we have added superscript (+) on, to point out that
the geometric phase (Eq. (33)) is concerned in the circular
polarized light with helicity +1. It is easy to show

γ(−)
c = −γ(+)

c . (34)

5 Discussion

1. We calculate the geometric phase of the photon sys-
tem by using the Maxwell equations in Schrödinger-like
form and the ordinary geometry method. This approach
provides a unified way to discuss the geometric phase in
both of massless or massive particle systems. In addition,
the calculation is clear and simple.

2. The parameter space is no long necessary in the AA
formulation. The evolution of the photon along a spatial

curve can be caused by an optical fiber, a series of po-
larizers or even a curved space. We need not to limit the
discussion about photon’s geometric phases only in the
case of optical fiber. Thus, ambiguities related to optical
fibers [12,13] can be avoided.

3. All concepts and methods used in this paper are
purely classical. This will probably indicate that the ge-
ometric phase of the photon system may be a classical
phenomenon. In order to see that, let us apply the result
equations (33, 34) to the case a helically wound optical
fiber in which the photon propagates. Consider a beam of
linear polarized light to inject into such a optical fiber and
denote its input state as

|ψ〉 =
1
√

2
(|+〉+ |−〉). (35)

Its output state can be denoted as

|ψ′〉 =
1
√

2
(exp(iγ+)|+〉+ exp(iγ−)|−〉)

=
1
√

2
(exp(iγ+)|+〉+ exp(−iγ+)|−〉). (36)

There is a factor appearing in the output state:

|〈ψ|ψ′〉|2 =
1

4
[exp(iγ+) + exp(−iγ+)]2 = cos2 γ+. (37)

According to Malus’s law in optics, equation (37) means
that the polarized plan of light undergoes a rotation by an
angle γ+. So the physical meaning of the geometric phase
γ is classically an angle. This is just the result in [7,8],
however, our method is purely classical.
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